Livestock
Permanent URI for this collectionhttp://104.225.218.216/handle/123456789/40
All Livestock research conducted by NARO over the years both at National and Zonal level is housed in this collection
Browse
Browsing Livestock by Author "Andrew Wange Bugenyi"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Bacillus- and Lactobacillus-Based Dietary Synbiotics Are Associated with Shifts in the Oropharyngeal, Proximal Colonic, and Vaginal Microbiomes of Korean Native Black Pigs(Fermentation, 2023-04-06) Andrew Wange Bugenyi; Ki-Duk Song; Hak-Kyo Lee; Jaeyoung HeoIn this study, we evaluated the modulatory effect of synbiotics (probiotics + prebiotics) on the oropharyngeal, proximal colonic, and vaginal microbiomes of Korean native pigs using 16S rRNA gene sequencing. We found increased abundances of an unclassified deltaproteobacterial genus in oropharyngeal communities of pigs supplemented with a Lactobacillus-based synbiotic. These pigs also had increased abundances of unclassified genera of Tremblayales and Lactobacillales in their proximal colons. In another group, pigs supplemented with a Bacillus-based synbiotic had increased Megasphaera and reduced Campylobacter within their oropharyngeal microbiota. In addition, their vaginal microbiota had increased Clostridium and Halalkalibacillus, as well as reduced Filifactor and Veillonella. We then explored changes in the predicted microbial functionality, associated with the synbiotics. Our analysis showed a reduction in the abundance of a fatty acid and lipid biosynthesis pathway among proximal colonic microbiomes of the Lactobacillus-fed pigs. In pigs supplemented with a Bacillus-based synbiotic, the analysis showed reduced pathway abundances for the biosynthesis of carbohydrates, as well as vitamins, cofactors, and carrier molecules within their oropharyngeal microbiomes. Meanwhile, their vaginal microbiomes had higher pathway abundances for aromatic compound degradation and secondary metabolite biosynthesis, but lower abundances for amino acid degradation. The results confirmed our hypothesis that dietary synbiotics modulate the microbiome, not only in the proximal colon, but also the oropharyngeal cavity and vaginal tract of these pigs.Item Bean Sprouts, Lettuce, and Milk as Water Sources in Tenebrio molitor Larval Growth(Animals, 2024-03-14) Seokhyun Lee; Andrew Wange Bugenyi; Hakkyo Lee; Jaeyoung HeoThe Tenebrio molitor larva (yellow mealworm) holds great potential as a sustainable ingredient in food and feed. Optimizing its growth under mass farming requires careful water management. However, the availability and cost of fresh fruit and vegetables, which are the most widely used sources of water, can vary geographically, which calls for the search for relatively affordable, effective, and readily available alternatives. We evaluated the effect of three water sources (bean sprouts, lettuce leaves, and milk) as well as their quantity on weights and nutrient profiles of reared T. molitor larvae. Newly hatched mealworm larvae were maintained in controlled conditions of 25 ◦C and 60% relative humidity under a 12-h light–dark cycle for 15 weeks. When provided as sole-supplements, bean sprouts induced the highest larval weight gains compared to fresh lettuce leaves, which in turn performed better than milk and water. However, the addition of milk to the vegetable supplements enhanced growth. Furthermore, doubling the level of water supply resulted in 70% higher larval weights by week 14 post hatching. Moreover, water sources did not change the nutrient content of the harvested larvae. These findings suggest that mealworm productivity can be enhanced by increasing water feed levels and that bean sprouts may be a superior alternative to lettuce.Item Effects of Administration of Prebiotics Alone or in Combination with Probiotics on In Vitro Fermentation Kinetics, Malodor Compound Emission and Microbial Community Structure in Swine(fermentation, 2023-07-28) Maro Lee; Yeonjae Choi; Joel Bayo; Andrew Wange Bugenyi; Yangseon Kim; Jaeyoung HeoThe objective of this study was to evaluate the effect of Lactobacillus amylovorus, L. plantarum, galacto-oligosaccharide (GOS) and their synbiotic formulations on pH, volatile fatty acids (VFA), malodor, and microbial ecological profiles through a 24-h in vitro fermentation model. Inclusion of GOS alone and in synbiotic combination with either probiotic resulted in consistently lower pH and higher total gas volumes at 12 and 24 h of incubation. Notably, concentrations of odorous compounds (hydrogen sulfide, H2S and methyl mercaptan, CH3SH) in the total gas produced were significantly lower in these GOS-containing treatments relative to the controls and probiotic-only-treated groups. However, although ammonia showed an initial relative reduction at 12 h, concentrations did not differ among treatments at 24 h. Further, the GOS-containing treatments had remarkably higher total and individual VFAs, including acetate, propionate, and butyrate, relative to controls and the probiotic-only treatments. Analysis of microbial composition and diversity showed clustering of GOS-containing treatments away from the controls and probiotic-only treatments at 12 and 24 h of incubation. Our study suggests that GOS supplementation (alone or in combination with L. amylovorus or L. plantarum probiotic strains) has the potential to increase VFA production in the swine gut while lowering emissions of malodorous compounds, except ammonia, in their manure.